A note on units of real quadratic fields (Q2902036)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on units of real quadratic fields |
scientific article; zbMATH DE number 6066744
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on units of real quadratic fields |
scientific article; zbMATH DE number 6066744 |
Statements
16 August 2012
0 references
units
0 references
real quadratic field
0 references
A note on units of real quadratic fields (English)
0 references
The authors prove that if \((t_d+u_d\sqrt{d})/\sigma \) is the fundamental unit of the real quadratic field \(\mathbb Q(\sqrt{d})\) with \(\sigma=2 \) provided \(d\equiv 1 \pmod{4}\) and \(\sigma=1\) otherwise, then \(u_d<d\) for all square-free integers \(d\) provided \(d\in S(\ell;a_1,\ldots a_{\ell-1})=\{d\in\mathbb Z\mid d>0,\sqrt{d}=[a_0,\overline{a_1, \ldots a_{\ell-1}}], \) with one possible exception, where \( a_1,\dots,a_{\ell-1} \) is a palindrome. This is then applied to the Ankeny-Artin-Chowla conjecture and the Mordell conjecture.
0 references