Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces (Q2903311)

From MaRDI portal





scientific article; zbMATH DE number 6064258
Language Label Description Also known as
English
Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces
scientific article; zbMATH DE number 6064258

    Statements

    0 references
    0 references
    0 references
    0 references
    8 August 2012
    0 references
    nondoubling measure
    0 references
    upper doubling
    0 references
    geometrical doubling
    0 references
    Calderón--Zygmund operator
    0 references
    Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces (English)
    0 references
    Let \((X,d, \mu)\) be a separable metric space and let \(T\) be a Calderón--Zygmund operator with standard kernel \(K\): NEWLINE\[NEWLINE Tf(x) := \int_X K(x,y)f(y)d\mu(y), \quad x \notin \text{supp}\;f. NEWLINE\]NEWLINE When \(\mu\) satisfies the polynomial growth condition: NEWLINE\[NEWLINE \mu( \{ y \in {\mathbb R}^n: | x-y | <r \}) \leq C r^a, NEWLINE\]NEWLINE \textit{F. Nazarov, S. Treil} and \textit{A. Volberg} [Int. Math. Res. Not. 1998, No. 9, 463--487 (1998; Zbl 0918.42009)] proved that if \(T\) is bounded on \(L^2(\mu)\), then \(T\) is bounded on \(L^p(\mu)\) for all \(p \in (1,\infty)\). The authors generalize this result as follows. If \((X,d,\mu)\) satisfies the \textit{upper doubling condition}, the \textit{geometric doubling condition} (see \textit{T. Hytönen} [Publ. Mat., Barc. 54, No. 2, 485--504 (2010; Zbl 1246.30087)]) and the non-atomic condition that \(\mu(\{ x \}) =0\) for all \( \in X\), then the boundedness of \(T\) on \(L^2(\mu)\) is equivalent to that of \(T\) on \(L^p(\mu)\) for some \(p \in (1,\infty)\).
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references