A new character formula for Lie algebras and Lie groups (Q2905193)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A new character formula for Lie algebras and Lie groups |
scientific article; zbMATH DE number 6072209
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A new character formula for Lie algebras and Lie groups |
scientific article; zbMATH DE number 6072209 |
Statements
24 August 2012
0 references
Lie algebras
0 references
representation theory
0 references
characters
0 references
0.9139798
0 references
0.90852404
0 references
0.9053806
0 references
0.8988727
0 references
0.8964154
0 references
0.89295375
0 references
0.8923124
0 references
0.8919818
0 references
A new character formula for Lie algebras and Lie groups (English)
0 references
The effective determination of characters for Lie groups and Lie algebras is a very important work. A series of methods for determining of these have been proposed by a number of mathematical physicists, e.g. Hermann Weyl, Élie Cartan, Issai Schur, Richard Brauer and Hans Freudenthal, etc.. The study of the method for determining the characters is a very meaningful work. In this article, the author gives a new character formula for finite-dimensional representations of finite-dimensional complex semisimple Lie algebras and compact semisimple Lie groups which seems to be very different from previously-known formulas. The author also proves a few consequences and applications include new recursion formulas for multiplicities.
0 references