On the optimal constant for the Bergman projection onto the Bloch space (Q2906164)

From MaRDI portal





scientific article; zbMATH DE number 6077178
Language Label Description Also known as
English
On the optimal constant for the Bergman projection onto the Bloch space
scientific article; zbMATH DE number 6077178

    Statements

    On the optimal constant for the Bergman projection onto the Bloch space (English)
    0 references
    0 references
    5 September 2012
    0 references
    Bergman projection
    0 references
    Bloch space
    0 references
    Recall that the Bloch space \(\mathcal{B}\) on the unit disk \(\mathbb{D}\) consists of all analytic functions for which NEWLINE\[NEWLINE\|f\|_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1-|z|^2)|f'(z)| <\infty.NEWLINE\]NEWLINE Note that \(\|\cdot\|_{\mathcal{B}}\) is not a norm in \(\mathcal{B}\). Let \(P\) stand for the Bergman projection of \(L^{\infty}\) onto \(\mathcal{B}\). The author proves that the optimal constant in the inequality \(\|Pf\|_{\mathcal{B}} \leq C \|f\|_{\infty}\) is \(8/\pi\), and that the same result is thue for \(P: C(\overline{\mathbb{D}}) \rightarrow \mathcal{B}_0\), where \(\mathcal{B}_0\) is the little Bloch space.
    0 references

    Identifiers