Volume and \(L^2\)-Betti numbers of aspherical manifolds (Q2906580)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Volume and \(L^2\)-Betti numbers of aspherical manifolds |
scientific article; zbMATH DE number 6077616
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Volume and \(L^2\)-Betti numbers of aspherical manifolds |
scientific article; zbMATH DE number 6077616 |
Statements
5 September 2012
0 references
aspherical manifold
0 references
Ricci curvature
0 references
minimal volume
0 references
simplicial volume
0 references
\(L^2\)-Betti number
0 references
probability space
0 references
0.9337495
0 references
0.93031996
0 references
0 references
0.9094151
0 references
0.90777147
0 references
0.90725553
0 references
0.90234685
0 references
0 references
0.90037745
0 references
Volume and \(L^2\)-Betti numbers of aspherical manifolds (English)
0 references
Let \(\widetilde X\to X\) be the universal cover of a compact Riemannian manifold \(X\), and let \({\mathcal F}\subset \widetilde X\) be a \(\pi_1(X)\)-fundamental domain. The \(i\)-th \(L^2\)-Betti number, expressed in terms of the heat kernel on \(\widetilde X\) is \(b_i^{(2)}(X)=\lim\limits_{t\to\infty}\int_{\mathcal F}\text{tr}_{\mathbb C}e^{-t\Delta_i}(x,x)\mathrm{d}\operatorname{vol}(x)\).NEWLINENEWLINEIn this paper, the author presents the relationship between volume and \(L^2\)-Betti numbers on closed aspherical manifolds. It is shown that if \((M,g)\) has a lower Ricci curvature bound \(\text{Ricci}(M,g)\geq -(n-1)g\), then \(b_i^{(2)}(M)\leq \text{const}_n\text{vol}(M,g)\).NEWLINENEWLINEFor the entire collection see [Zbl 1241.00016].
0 references