Volume and \(L^2\)-Betti numbers of aspherical manifolds (Q2906580)

From MaRDI portal





scientific article; zbMATH DE number 6077616
Language Label Description Also known as
English
Volume and \(L^2\)-Betti numbers of aspherical manifolds
scientific article; zbMATH DE number 6077616

    Statements

    0 references
    5 September 2012
    0 references
    aspherical manifold
    0 references
    Ricci curvature
    0 references
    minimal volume
    0 references
    simplicial volume
    0 references
    \(L^2\)-Betti number
    0 references
    probability space
    0 references
    Volume and \(L^2\)-Betti numbers of aspherical manifolds (English)
    0 references
    Let \(\widetilde X\to X\) be the universal cover of a compact Riemannian manifold \(X\), and let \({\mathcal F}\subset \widetilde X\) be a \(\pi_1(X)\)-fundamental domain. The \(i\)-th \(L^2\)-Betti number, expressed in terms of the heat kernel on \(\widetilde X\) is \(b_i^{(2)}(X)=\lim\limits_{t\to\infty}\int_{\mathcal F}\text{tr}_{\mathbb C}e^{-t\Delta_i}(x,x)\mathrm{d}\operatorname{vol}(x)\).NEWLINENEWLINEIn this paper, the author presents the relationship between volume and \(L^2\)-Betti numbers on closed aspherical manifolds. It is shown that if \((M,g)\) has a lower Ricci curvature bound \(\text{Ricci}(M,g)\geq -(n-1)g\), then \(b_i^{(2)}(M)\leq \text{const}_n\text{vol}(M,g)\).NEWLINENEWLINEFor the entire collection see [Zbl 1241.00016].
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references