On an additive-number-theoretic problem of P. Erdős (Q2906911)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On an additive-number-theoretic problem of P. Erdős |
scientific article; zbMATH DE number 6077890
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On an additive-number-theoretic problem of P. Erdős |
scientific article; zbMATH DE number 6077890 |
Statements
5 September 2012
0 references
density
0 references
special sequences
0 references
On an additive-number-theoretic problem of P. Erdős (English)
0 references
For a set \(A= \{a_1,a_2,\dots\}\subseteq\mathbb N\) let NEWLINE\[NEWLINEa_i+ a_j\neq 2^i\quad\text{for all }i,j\in\mathbb N.\tag{\(*\)}NEWLINE\]NEWLINE It is proved:NEWLINENEWLINE (i) For all such sets is \(\underline d(A):= \liminf_{x\to\infty}\, {1\over x} \sum_{a_i\leq x} 1\leq{1\over 2}\).NEWLINENEWLINE (ii) For the set \(\widetilde A= \bigcup^\infty_{j=0} \{3\cdot 2^i\,(\text{mod\,}2^{i+2})\}= \{3,7,11,\dots\}\cup \{6, 14, 22,\dots\}\cup \{12,28, 44,\dots\}\cup\dots\) holds condition \((*)\) and it is \(\underline d(\widetilde A)={1\over 2}\).NEWLINENEWLINE This article arose from a question of P. Erdős.
0 references