Non-standard oscillation theory for multiparameter eigenvalue problems (Q2908176)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Non-standard oscillation theory for multiparameter eigenvalue problems |
scientific article; zbMATH DE number 6076570
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Non-standard oscillation theory for multiparameter eigenvalue problems |
scientific article; zbMATH DE number 6076570 |
Statements
Non-standard oscillation theory for multiparameter eigenvalue problems (English)
0 references
4 September 2012
0 references
Sturm-Liouville equation
0 references
multiparameter eigenvalue problem
0 references
oscillation theory
0 references
The authors consider \(n\) differential equations NEWLINE\[NEWLINE \lambda_k\, y_k''+q_k(x_k)y_k+\sum_{j=1}^n\lambda_j\, p_{kj}(x_k)y_k =0,\quad x_k\in[a_k,b_k],\;k\in\{1,\dotsc,n\}, NEWLINE\]NEWLINE subject to separated boundary conditions NEWLINE\[NEWLINE \cos(\alpha_k)y_k(a_k)=\sin(\alpha_k)y_k'(a_k),\;\cos(\beta_k)y_k(b_k)=\sin(\beta_k)y_k'(b_k), NEWLINE\]NEWLINE and coupled by \(n\) real parameters \(\lambda_1,\dotsc,\lambda_n\). The coefficients \(q_k\) and \(p_{kj}\) are assumed to be real-valued and integrable on \([a_k,b_k]\) for every \(k,j\in\{1,\dotsc,n\}\). As usual, \(\alpha_k,\beta_k\in (0,\pi]\).NEWLINENEWLINEA tuple \(\mathbf{\lambda}=(\lambda_1,\dotsc,\lambda_n)\) with all \(\lambda_k\neq 0\) is called an eigenvalue if the corresponding boundary value problem admits a nontrivial solution. The central result of the paper under review is the existence of eigenvalues with oscillation counts beyond a certain value. Moreover, under additional definiteness-type assumptions on the coefficients, the authors establish uniqueness of eigenvalues with oscillation counts.
0 references