The Beurling operator for the hyperbolic plane (Q2908727)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Beurling operator for the hyperbolic plane |
scientific article; zbMATH DE number 6077161
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Beurling operator for the hyperbolic plane |
scientific article; zbMATH DE number 6077161 |
Statements
The Beurling operator for the hyperbolic plane (English)
0 references
5 September 2012
0 references
Beurling operator
0 references
isometry
0 references
norm estimates
0 references
hyperbolic plane
0 references
Let \(\mathbb C_+\) denote the upper half plane. The author introduces the Beurling-type operators NEWLINENEWLINENEWLINE\[NEWLINEB^{\downarrow}[f](z):=p.v. \int_{\mathbb C_+} \big[(z-\overline{w})^{-2} - (z-w)^{-2}\big]f(w) dA(w),\quad z\in\mathbb C_+,NEWLINE\]NEWLINENEWLINENEWLINENEWLINE\[NEWLINE B^{\uparrow}[f](z):=p.v. \int_{\mathbb C_+} \big[(\overline{z}-w)^{-2} - (z-w)^{-2}\big]f(w) dA(w), \quad z\in \mathbb C_+.NEWLINE\]NEWLINE NEWLINENEWLINEFor \(1<p<\infty\) and real \(q\), the author introduces the space \(L^p_q(\mathbb C_+)\) endowed with the norm \(\int_{\mathbb C_+}|f(z)|^p (Im z)^q dA(z)\). It is proved that the operator \(B^{\uparrow}\) is bounded and transforms \(L^p_p(\mathbb C_+)\) into itself. Cauchy-type operators are introduced and discussed. Estimates of the norms are obtained.
0 references