The Beurling operator for the hyperbolic plane (Q2908727)

From MaRDI portal





scientific article; zbMATH DE number 6077161
Language Label Description Also known as
English
The Beurling operator for the hyperbolic plane
scientific article; zbMATH DE number 6077161

    Statements

    The Beurling operator for the hyperbolic plane (English)
    0 references
    0 references
    5 September 2012
    0 references
    Beurling operator
    0 references
    isometry
    0 references
    norm estimates
    0 references
    hyperbolic plane
    0 references
    Let \(\mathbb C_+\) denote the upper half plane. The author introduces the Beurling-type operators NEWLINENEWLINENEWLINE\[NEWLINEB^{\downarrow}[f](z):=p.v. \int_{\mathbb C_+} \big[(z-\overline{w})^{-2} - (z-w)^{-2}\big]f(w) dA(w),\quad z\in\mathbb C_+,NEWLINE\]NEWLINENEWLINENEWLINENEWLINE\[NEWLINE B^{\uparrow}[f](z):=p.v. \int_{\mathbb C_+} \big[(\overline{z}-w)^{-2} - (z-w)^{-2}\big]f(w) dA(w), \quad z\in \mathbb C_+.NEWLINE\]NEWLINE NEWLINENEWLINEFor \(1<p<\infty\) and real \(q\), the author introduces the space \(L^p_q(\mathbb C_+)\) endowed with the norm \(\int_{\mathbb C_+}|f(z)|^p (Im z)^q dA(z)\). It is proved that the operator \(B^{\uparrow}\) is bounded and transforms \(L^p_p(\mathbb C_+)\) into itself. Cauchy-type operators are introduced and discussed. Estimates of the norms are obtained.
    0 references

    Identifiers