The Heisenberg oscillator (Q2908965)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Heisenberg oscillator |
scientific article; zbMATH DE number 6073628
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Heisenberg oscillator |
scientific article; zbMATH DE number 6073628 |
Statements
The Heisenberg oscillator (English)
0 references
29 August 2012
0 references
nilpotent Lie groups
0 references
harmonic oscillator
0 references
representation of nilpotent Lie groups
0 references
0 references
0.8573201
0 references
0 references
0 references
0 references
The author determines the spectrum of the Heisenberg oscillator \(L+|x|^2+|y|^2\) on the three-dimensional Heisenberg group \(H_{1}=\mathbb{R}^2_{x,y}\times \mathbb{R}\) where \(L=-(X^2+Y^2)\) stands for the positive sublaplacian on \(H_{1}\).NEWLINENEWLINELet \(\tau\) be the unitary irreducible Schrödinger representation of \(H_{1}\) corresponding to the central character \(t \mapsto e^{it}\). Then NEWLINE\[NEWLINE d\tau(L)=-\partial^2_{x}+x^2.\tag{*} NEWLINE\]NEWLINE The spectrum of the quantum harmonic oscillator \(-\partial^2_{x}+x^2\) on \(\mathbb{R}\) is well known and the equality (\(*\)) allows to describe the spectrum of \(L\).NEWLINENEWLINEIn the paper, the author reverses the line of approach described above to study the Heisenberg oscillator \(L+|x|^2+|y|^2\) on \(L^2(H_{1})\).NEWLINENEWLINEThis study could be generalized to the (\(2n+1\))-dimensional Heisenberg group.
0 references