The Heisenberg oscillator (Q2908965)

From MaRDI portal





scientific article; zbMATH DE number 6073628
Language Label Description Also known as
English
The Heisenberg oscillator
scientific article; zbMATH DE number 6073628

    Statements

    The Heisenberg oscillator (English)
    0 references
    0 references
    29 August 2012
    0 references
    nilpotent Lie groups
    0 references
    harmonic oscillator
    0 references
    representation of nilpotent Lie groups
    0 references
    The author determines the spectrum of the Heisenberg oscillator \(L+|x|^2+|y|^2\) on the three-dimensional Heisenberg group \(H_{1}=\mathbb{R}^2_{x,y}\times \mathbb{R}\) where \(L=-(X^2+Y^2)\) stands for the positive sublaplacian on \(H_{1}\).NEWLINENEWLINELet \(\tau\) be the unitary irreducible Schrödinger representation of \(H_{1}\) corresponding to the central character \(t \mapsto e^{it}\). Then NEWLINE\[NEWLINE d\tau(L)=-\partial^2_{x}+x^2.\tag{*} NEWLINE\]NEWLINE The spectrum of the quantum harmonic oscillator \(-\partial^2_{x}+x^2\) on \(\mathbb{R}\) is well known and the equality (\(*\)) allows to describe the spectrum of \(L\).NEWLINENEWLINEIn the paper, the author reverses the line of approach described above to study the Heisenberg oscillator \(L+|x|^2+|y|^2\) on \(L^2(H_{1})\).NEWLINENEWLINEThis study could be generalized to the (\(2n+1\))-dimensional Heisenberg group.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references