Continued fractions with odd partial quotients (Q2909603)

From MaRDI portal





scientific article; zbMATH DE number 6078190
Language Label Description Also known as
English
Continued fractions with odd partial quotients
scientific article; zbMATH DE number 6078190

    Statements

    0 references
    6 September 2012
    0 references
    continued fractions
    0 references
    ''odd'' Euclidean algorithm
    0 references
    distribution function
    0 references
    Stern-Brocot tree
    0 references
    Continued fractions with odd partial quotients (English)
    0 references
    Every rational number \(x\in[0,1]\) can be uniquely represented as ``odd'' continued fraction NEWLINE\[NEWLINEx=1+\dfrac{\varepsilon_1}{a_1+\dfrac{\varepsilon_2}{a_2+ {\atop\ddots\,\displaystyle{+\dfrac{\varepsilon_l}{a_l}}}}},NEWLINE\]NEWLINE where all \(a_i\) are odd, \(\varepsilon_i=\pm1\) (\(\varepsilon_1=-1\)) and \(a_j+\varepsilon_{j+1}\geq 2\) for \(j\geq 1\). (If \(a_l=1\), then \(\varepsilon_l=1\) for uniqueness of the representation.)NEWLINENEWLINELet NEWLINE\[NEWLINES(x)=\sum\limits_{j=1}^{l}a_jNEWLINE\]NEWLINE be a sum of all partial quotients of \(x\) and NEWLINE\[NEWLINEM_n=\left\{x\in\mathbb{Q}\cap[0,1]:S(x)\leq n+1\right\}.NEWLINE\]NEWLINE The author studies the limit distribution function NEWLINE\[NEWLINEF(x)=\lim\limits_{n\to\infty}F_n(x),NEWLINE\]NEWLINE where NEWLINE\[NEWLINEF_n(x)=\frac{\#\left\{\xi\in M_n:\xi\leq x\right\}}{\# M_n},\qquad(x\in[0,1]).NEWLINE\]NEWLINE The function \(F\) plays the same role for odd continued fractions as Minkowski question mark function plays for classical continued fractions. The paper under review describes main properties of the function \(F\). In particular it is proved that this function is singular and satisfies a number of functional equations.
    0 references

    Identifiers