On the Kontorovich-Lebedev transform (Q2910113)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the Kontorovich-Lebedev transform |
scientific article; zbMATH DE number 6079039
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the Kontorovich-Lebedev transform |
scientific article; zbMATH DE number 6079039 |
Statements
7 September 2012
0 references
Macdonald-Bessel function
0 references
integral transform
0 references
Kontorovich-Lebedev transform
0 references
inversion formula
0 references
0.98377705
0 references
0.97722906
0 references
0.9590843
0 references
0.9454968
0 references
0.93705845
0 references
0.9362967
0 references
On the Kontorovich-Lebedev transform (English)
0 references
The authors consider the Kontorovich-Lebedev transform in the form NEWLINE\[NEWLINEg(t)= \int^\infty_0 f(x)\,K_{it}(x){dx\over x},NEWLINE\]NEWLINE where \(K_{it}\) is the Macdonald-Bessel function, and give a proof of the inversion formula. The proof is based on the evaluation of the integral NEWLINE\[NEWLINE\int^\infty_{-\infty} K_{it}(x)\,K_{it}(y)\, K_{it}(z){dt\over \Gamma(it)\Gamma(-it)},NEWLINE\]NEWLINE which is interesting by itself.
0 references