Nontrivial solutions for semilinear elliptic problems with resonance (Q2910508)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nontrivial solutions for semilinear elliptic problems with resonance |
scientific article; zbMATH DE number 6080790
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nontrivial solutions for semilinear elliptic problems with resonance |
scientific article; zbMATH DE number 6080790 |
Statements
11 September 2012
0 references
semilinear elliptic equation
0 references
mountain pass theorem
0 references
resonance
0 references
Nontrivial solutions for semilinear elliptic problems with resonance (English)
0 references
Let \(\Omega \subset \mathbb{R}^N, \;N\geq 1, \) be a bounded smooth domain, let \(\lambda_k\) be an eigenvalue of \((-\Delta, H_0^1(\Omega))\) and \(f:\Omega\times \mathbb{R} \longrightarrow \mathbb{R}\) be a Carathéodory function. The authors prove that there exists at least one nontrivial solution for the following semilinear elliptic problem with Dirichlet boundary: NEWLINE\[NEWLINE-\Delta u =\lambda_k u + f(x,u) \text{ in } \Omega, \;u|_{\partial \Omega} =0NEWLINE\]NEWLINE under some further conditions on \(f\), such as, \(\exists a(x), b(x) \in L^\infty(\Omega)\) such that, for \(\alpha \in (0,1)\), NEWLINE\[NEWLINE0\leq a(x) \leq \liminf_{s\rightarrow \pm \infty} \frac{f(x,s)}{|s|^{\alpha-1}s} \leq \limsup_{s\rightarrow \pm \infty} \frac{f(x,s)}{|s|^{\alpha-1}s} \leq b(x) \text{ uniformly in a.e. } x \in \Omega.\tag{F1}NEWLINE\]NEWLINE NEWLINE\[NEWLINE 0<\liminf_{\|u\|\rightarrow +\infty, u\in E(\lambda_k)} \frac{1}{\|u\|^2\alpha}\int_\Omega F(x,u)dx, \text{ with } F(x,u)=\int_0^u f(x,s)ds.\tag{F2}NEWLINE\]NEWLINE (F3): There is \(\ell(x) \in L^2(\Omega)\) with \(\ell<\lambda_1-\lambda_k\) a.e. in \(\Omega\) such that NEWLINE\[NEWLINE\limsup_{|s|\rightarrow 0} \frac{2F(x,s)}{s^2} \text{ uniformly in a.e. } x\in \Omega.NEWLINE\]
0 references