An ETD Crank-Nicolson method for reaction-diffusion systems (Q2910812)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: An ETD Crank-Nicolson method for reaction-diffusion systems |
scientific article; zbMATH DE number 6081137
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | An ETD Crank-Nicolson method for reaction-diffusion systems |
scientific article; zbMATH DE number 6081137 |
Statements
An ETD Crank-Nicolson method for reaction-diffusion systems (English)
0 references
11 September 2012
0 references
exponential time Runge-Kutta method
0 references
reaction-diffusion equation
0 references
convergence
0 references
initial damping
0 references
chemotaxis
0 references
exotic options
0 references
exponential time differencing
0 references
nonlinear Black-Scholes equation
0 references
transaction cost
0 references
Crank-Nicolson-method
0 references
stability
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
The authors propose the exponential time difference Crank-Nicolson-(ETD-CN)-method for a class of reaction-diffusion problems. The convergence and stability are proved and illustrated for partial differential equations (PDEs) with smooth initial values. For PDEs with nonsmooth initial values and nonlinear transaction cost, for instance the chemotaxis and exotic options, the authors show the efficiency and second-order numerical convergence of the ETD-CN scheme when the initial damping technique is used.
0 references