Pythagorean triples over Gaussian integers (Q2911230)

From MaRDI portal





scientific article; zbMATH DE number 6081650
Language Label Description Also known as
English
Pythagorean triples over Gaussian integers
scientific article; zbMATH DE number 6081650

    Statements

    12 September 2012
    0 references
    free abelian group
    0 references
    Gaussian integer
    0 references
    Pythagorean triple
    0 references
    unique factorization
    0 references
    Pythagorean triples over Gaussian integers (English)
    0 references
    The authors define a set PT of Pythagorean triples in the ring of Gaussian integers as \((a,b,c) \in \mathbb{Z}[i]^3\), where \(a \neq 0\) and \(a^2+b^2=c^2\). The set PT is a commutative monoid under the operation \(*\) defined by NEWLINE\[NEWLINE(a_1,b_1,c_1) * (a_2,b_2,c_2)=(a_1a_2,b_1c_2+b_2c_1,b_1b_2+c_1c_2)NEWLINE\]NEWLINE with the identity element \((1,0,1)\). In the paper the authors derive some unique factorization theorem in PT and study some related questions.
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references