Pythagorean triples over Gaussian integers (Q2911230)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Pythagorean triples over Gaussian integers |
scientific article; zbMATH DE number 6081650
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Pythagorean triples over Gaussian integers |
scientific article; zbMATH DE number 6081650 |
Statements
12 September 2012
0 references
free abelian group
0 references
Gaussian integer
0 references
Pythagorean triple
0 references
unique factorization
0 references
Pythagorean triples over Gaussian integers (English)
0 references
The authors define a set PT of Pythagorean triples in the ring of Gaussian integers as \((a,b,c) \in \mathbb{Z}[i]^3\), where \(a \neq 0\) and \(a^2+b^2=c^2\). The set PT is a commutative monoid under the operation \(*\) defined by NEWLINE\[NEWLINE(a_1,b_1,c_1) * (a_2,b_2,c_2)=(a_1a_2,b_1c_2+b_2c_1,b_1b_2+c_1c_2)NEWLINE\]NEWLINE with the identity element \((1,0,1)\). In the paper the authors derive some unique factorization theorem in PT and study some related questions.
0 references