Positive solutions of an \(n\)th order multi-point boundary value problem (Q2912686)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positive solutions of an \(n\)th order multi-point boundary value problem |
scientific article; zbMATH DE number 6082936
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positive solutions of an \(n\)th order multi-point boundary value problem |
scientific article; zbMATH DE number 6082936 |
Statements
14 September 2012
0 references
positive solutions
0 references
fixed point
0 references
cones
0 references
Positive solutions of an \(n\)th order multi-point boundary value problem (English)
0 references
The author uses the Avery-Henderson fixed point theorem and the five functionals fixed point theorem to show the existence and multiplicity of positive solutions of the \(n\)th order multi-point boundary value problem NEWLINE\[NEWLINE y^{(n)}(t)+Q(t, y,y',\dotsc, y^{(n-2)})=P(t, y,y',\dotsc, y^{(n-2)}), \quad t\in (a,b),NEWLINE\]NEWLINE NEWLINE\[NEWLINEy^{(i)}(a)=0, \quad \sum^m_{i=1}\alpha_i y^{(n-2)}(\xi_i)=y^{(n-2)}(b),NEWLINE\]NEWLINE where \(m \geq 1\), \(n \geq 3\), \(a < \xi_1<\dotsb<\xi_{m} < b\), \(\alpha_i \in (0, \infty)\) for \(1\leq i\leq m\), \(\sum^{m}_{i=1}\alpha_i<1\), and \(D=b-a-\sum^{m}_{i=1}\alpha_i(\xi_i-a)>0\).
0 references