Positive solutions of an \(n\)th order multi-point boundary value problem (Q2912686)

From MaRDI portal





scientific article; zbMATH DE number 6082936
Language Label Description Also known as
English
Positive solutions of an \(n\)th order multi-point boundary value problem
scientific article; zbMATH DE number 6082936

    Statements

    14 September 2012
    0 references
    positive solutions
    0 references
    fixed point
    0 references
    cones
    0 references
    Positive solutions of an \(n\)th order multi-point boundary value problem (English)
    0 references
    The author uses the Avery-Henderson fixed point theorem and the five functionals fixed point theorem to show the existence and multiplicity of positive solutions of the \(n\)th order multi-point boundary value problem NEWLINE\[NEWLINE y^{(n)}(t)+Q(t, y,y',\dotsc, y^{(n-2)})=P(t, y,y',\dotsc, y^{(n-2)}), \quad t\in (a,b),NEWLINE\]NEWLINE NEWLINE\[NEWLINEy^{(i)}(a)=0, \quad \sum^m_{i=1}\alpha_i y^{(n-2)}(\xi_i)=y^{(n-2)}(b),NEWLINE\]NEWLINE where \(m \geq 1\), \(n \geq 3\), \(a < \xi_1<\dotsb<\xi_{m} < b\), \(\alpha_i \in (0, \infty)\) for \(1\leq i\leq m\), \(\sum^{m}_{i=1}\alpha_i<1\), and \(D=b-a-\sum^{m}_{i=1}\alpha_i(\xi_i-a)>0\).
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references