Stability of an additive functional inequality (Q2913874)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Stability of an additive functional inequality |
scientific article; zbMATH DE number 6085178
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stability of an additive functional inequality |
scientific article; zbMATH DE number 6085178 |
Statements
21 September 2012
0 references
Ulam-Hyers stability
0 references
additive function
0 references
normed space
0 references
Banach space
0 references
Stability of an additive functional inequality (English)
0 references
Let \(f:\mathcal X \to \mathcal Y\), \(\mathcal X\) be a normed space and \(\mathcal Y\) be a Banach space. After showing that \(f\) is additive if and only if it satisfies the inequality NEWLINE\[NEWLINE \| f(x)+f(y)+f(z) \| \leq \| f(x+y)+f(z) \|, NEWLINE\]NEWLINE the authors prove the following stability result:NEWLINENEWLINETheorem: Let \(f:\mathcal X \to \mathcal Y\), \(\mathcal X\) be an odd mapping. If there exists a function \(\phi: \mathcal X^3 \to [0,\infty)\) satisfying NEWLINE\[NEWLINE \| f(x)+f(y)+f(z) \| \leq \| f(x+y)+f(z) \|+\phi(x,y,z) NEWLINE\]NEWLINE and NEWLINE\[NEWLINE \psi(x,y,z):=\sum_{j=0}^{\infty} \frac{1}{2^j} \phi(2^{j+1}x,-2^jy,-2^jz) < \infty NEWLINE\]NEWLINE for all \(x, y, z \in \mathcal X\), then there exists a unique additive mapping \(A:\mathcal X \to \mathcal Y\) such that NEWLINE\[NEWLINE \| f(x)-A(x)\| \leq \frac{1}{2}\psi(x,x,x) NEWLINE\]NEWLINE for all \(x \in \mathcal X\).NEWLINENEWLINEThe proof is based on the standard direct method.
0 references