Ternary codes associated with \(\mathrm{O}(3,3^r)\) and power moments of Kloosterman sums with trace nonzero square arguments (Q2915737)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Ternary codes associated with \(\mathrm{O}(3,3^r)\) and power moments of Kloosterman sums with trace nonzero square arguments |
scientific article; zbMATH DE number 6083588
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Ternary codes associated with \(\mathrm{O}(3,3^r)\) and power moments of Kloosterman sums with trace nonzero square arguments |
scientific article; zbMATH DE number 6083588 |
Statements
18 September 2012
0 references
Kloosterman sum
0 references
power moment
0 references
orthogonal group
0 references
weight distribution
0 references
math.NT
0 references
cs.IT
0 references
math.IT
0 references
0.9679757
0 references
0.9433542
0 references
0.9328658
0 references
0.89260715
0 references
0.87604636
0 references
0.86730474
0 references
0.86023146
0 references
0.86023146
0 references
Ternary codes associated with \(\mathrm{O}(3,3^r)\) and power moments of Kloosterman sums with trace nonzero square arguments (English)
0 references
Let \(\lambda\) be the canonical additive character on a finite field \(\mathbb F_q\). The Kloosterman sum, for \(a\in \mathbb F_q^*\), is: NEWLINE\[NEWLINE K(a)=\sum_{\alpha\in\mathbb F_q^*} \lambda (\alpha +a\alpha^{-1}). NEWLINE\]NEWLINE For a positive integer \(h\), the \(h\)-th moment of the Kloosterman sum with trace nonzero square arguments is: NEWLINE\[NEWLINE T_{12}SK^h =\sum_{a\in \mathbb F_q^*, tr a\neq 0} K(a^2)^h. NEWLINE\]NEWLINE Now assume that \(q=3^r\). The author gives recursive formulas for \(T_{12}SK^h\). The formulas involve the Stirling numbers of the second kind and the weights of two ternary linear codes, one constructed from \(\mathrm{SO}(3,q)\) and the other from \(\mathrm{O}(3,q)\).
0 references