On some new congruences for generalized Bernoulli numbers (Q2919685)

From MaRDI portal





scientific article; zbMATH DE number 6090466
Language Label Description Also known as
English
On some new congruences for generalized Bernoulli numbers
scientific article; zbMATH DE number 6090466

    Statements

    On some new congruences for generalized Bernoulli numbers (English)
    0 references
    0 references
    0 references
    0 references
    5 October 2012
    0 references
    congruence
    0 references
    generalized Bernoulli number
    0 references
    special value of \(L\)-function
    0 references
    ordinary Bernoulli number
    0 references
    Bernoulli polynomial
    0 references
    Euler number
    0 references
    Let \(n>3\) be an odd number, and let \(\chi_n\) be the trivial Dirichlet character modulo \(n\). Let \(\varphi\) denote the Euler function, \(E_n\) the Euler numbers, and \(B_n\) the Bernoulli numbers. This paper proves that NEWLINE\[NEWLINE\begin{aligned} &\sum_{0<i<n/4}\frac{\chi_n(i)}{i^2}\equiv 8\left(nB_{n\varphi(n)-2}\prod_{p\mid 4n}\left(1-p^{n\varphi(n)-3}\right)\right.\\ &\qquad\left.+\frac{1}{2}(-1)^{(n-1)/2}E_{n\varphi(n)-2}\prod_{p\mid n}\left(1-(-1)^{(p-1)/2}p^{n\varphi(n)-2}\right)\right) \pmod{n^2}. \end{aligned}NEWLINE\]
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references