On some new congruences for generalized Bernoulli numbers (Q2919685)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On some new congruences for generalized Bernoulli numbers |
scientific article; zbMATH DE number 6090466
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On some new congruences for generalized Bernoulli numbers |
scientific article; zbMATH DE number 6090466 |
Statements
On some new congruences for generalized Bernoulli numbers (English)
0 references
5 October 2012
0 references
congruence
0 references
generalized Bernoulli number
0 references
special value of \(L\)-function
0 references
ordinary Bernoulli number
0 references
Bernoulli polynomial
0 references
Euler number
0 references
Let \(n>3\) be an odd number, and let \(\chi_n\) be the trivial Dirichlet character modulo \(n\). Let \(\varphi\) denote the Euler function, \(E_n\) the Euler numbers, and \(B_n\) the Bernoulli numbers. This paper proves that NEWLINE\[NEWLINE\begin{aligned} &\sum_{0<i<n/4}\frac{\chi_n(i)}{i^2}\equiv 8\left(nB_{n\varphi(n)-2}\prod_{p\mid 4n}\left(1-p^{n\varphi(n)-3}\right)\right.\\ &\qquad\left.+\frac{1}{2}(-1)^{(n-1)/2}E_{n\varphi(n)-2}\prod_{p\mid n}\left(1-(-1)^{(p-1)/2}p^{n\varphi(n)-2}\right)\right) \pmod{n^2}. \end{aligned}NEWLINE\]
0 references