Boundary layers, Rellich estimates and extrapolation of solvability for elliptic systems (Q2921108)

From MaRDI portal





scientific article; zbMATH DE number 6349731
Language Label Description Also known as
English
Boundary layers, Rellich estimates and extrapolation of solvability for elliptic systems
scientific article; zbMATH DE number 6349731

    Statements

    Boundary layers, Rellich estimates and extrapolation of solvability for elliptic systems (English)
    0 references
    0 references
    0 references
    30 September 2014
    0 references
    boundary value problems
    0 references
    elliptic systems in divergence form
    0 references
    0 references
    0 references
    0 references
    0 references
    In this paper, the authors consider boundary value problems of elliptic systems in divergence form on the upper half-space \(\mathbb R_+^{1+n}\), \(1+n\geq 2\). Assuming De Giorgi-type conditions and by introducing a new method which allows to treat each boundary value problem independently of the other ones, they study the extrapolation of solvability for related Neumann and Dirichlet problems. Indeed, the authors reprove the Regularity-Dirichlet duality principle between dual systems for solvability obtained in a previous work and extend it to \(H^1-\mathrm{BMO}\). Also they formulate and use a new duality principle for Neumann problems.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references