A note on multilinear Muckenhoupt classes for multiple weights (Q2921793)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A note on multilinear Muckenhoupt classes for multiple weights |
scientific article; zbMATH DE number 6354974
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A note on multilinear Muckenhoupt classes for multiple weights |
scientific article; zbMATH DE number 6354974 |
Statements
A note on multilinear Muckenhoupt classes for multiple weights (English)
0 references
13 October 2014
0 references
multiple weights
0 references
multilinear Muckenhoupt classes
0 references
0 references
\textit{A. Lerner} et al. [Adv. Math. 220, No. 4, 1222--1264 (2009; Zbl 1160.42009)] introduced the multilinear \(A_{\vec{P}}\) conditions for multiple weights adapted to the multilinear Calderón-Zygmund theory. Unlike the classical \(A_p\) classes, the multiple-weight classes \(A_{\vec{P}}\) are not increasing with the natural partial order in general. On the other hand, \textit{K. Moen} [Collect. Math. 60, No. 2, 213--238 (2009; Zbl 1172.26319)] and \textit{X. Chen} and \textit{Q. Xue} [J. Math. Anal. Appl. 362, No. 2, 355--373 (2010; Zbl 1200.26023)] investigated the multilinear \(A_{(\vec{P},q)}\) conditions in studying the weighted theory of multilinear fractional operators.NEWLINENEWLINEThis paper continues the study of the multilinear \(A_{\vec{P}}\) conditions and \(A_{(\vec{P},q)}\) conditions. Some interesting results are obtained. Firstly, the authors give some monotonicity properties of the multiple-weight classes \(A_{\vec{P}}\) with respect to \(\vec{P}\). Secondly, some characterizations of \(A_{(\vec{P},q)}\) classes in terms of the classical \(A_p\) classes are established. As an application, some monotonicity properties of the multiple-weight classes \(A_{(\vec{P},q)}\) are also given.NEWLINENEWLINEThe results of this paper improve and extend the previous results.
0 references