Hölder regularity of the gradient for the non-homogeneous parabolic \(p(x,t)\)-Laplacian equations (Q2922237)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Hölder regularity of the gradient for the non-homogeneous parabolic \(p(x,t)\)-Laplacian equations |
scientific article; zbMATH DE number 6353363
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Hölder regularity of the gradient for the non-homogeneous parabolic \(p(x,t)\)-Laplacian equations |
scientific article; zbMATH DE number 6353363 |
Statements
9 October 2014
0 references
Hölder regularity
0 references
weak solutions
0 references
parabolic \(p\)-Laplacian
0 references
0 references
0 references
0 references
0 references
0.9627651
0 references
0 references
0.9616862
0 references
0.95763445
0 references
0.95270514
0 references
0.9505316
0 references
0.9452326
0 references
Hölder regularity of the gradient for the non-homogeneous parabolic \(p(x,t)\)-Laplacian equations (English)
0 references
In this paper, the author obtains the local Hölder regularity of the gradient of weak solutions for the non-homogeneous parabolic \(p(x,t)\)-Laplacian equation NEWLINE\[NEWLINE u_t-\text{div}((A\nabla u\cdot\nabla u)^{\frac{p(x)-2}{2}}A\nabla u)=\text{div}(|f|^{p(x)-2}f), NEWLINE\]NEWLINE provided \(p(x,t), A\) and \(f\) are Hölder-continuous functions.
0 references