The global bifurcation of a kind of cubic system (Q2922357)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The global bifurcation of a kind of cubic system |
scientific article; zbMATH DE number 6353519
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The global bifurcation of a kind of cubic system |
scientific article; zbMATH DE number 6353519 |
Statements
10 October 2014
0 references
perturbation
0 references
bifurcation
0 references
limit cycle
0 references
homoclinic loop
0 references
The global bifurcation of a kind of cubic system (English)
0 references
This paper focuses on a particular planar cubic system with at most quadratic perturbations. Namely, NEWLINE\[NEWLINE \dot x = y(1+y^2),\qquad \dot y = x(1-x^2) - \varepsilon y (a_1+a_2 x +a_3 x^2+a_4 y^2). NEWLINE\]NEWLINE Using some numerical estimates it argues the existence (and possible forms) of 5 limit cycles.
0 references