Chiral anomaly via vertex algebroids (Q2922438)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Chiral anomaly via vertex algebroids |
scientific article; zbMATH DE number 6353651
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Chiral anomaly via vertex algebroids |
scientific article; zbMATH DE number 6353651 |
Statements
10 October 2014
0 references
Grothendieck-Riemann-Roch formula
0 references
stacks
0 references
0 references
0 references
0 references
0.9125216
0 references
0.9047595
0 references
0.9017596
0 references
0.9001739
0 references
0.8975942
0 references
Chiral anomaly via vertex algebroids (English)
0 references
Let \(q : X \rightarrow S\) be a principal \(\mathrm{U}(1)\)-bundle over some manifold \(S\), and let \(\mathcal{E}\) be a complex vector bundle on \(X\). There is an associated Grothendieck-Riemann-Roch formula due to \textit{P. Bressler} et al. [Prog. Math. 269, 125--164 (2009; Zbl 1230.14010)] which is NEWLINE\[NEWLINE \mathrm{c}_1(q_* \mathcal{E})=\int_{X/S} \mathrm{ch}_2(\mathcal{E}). NEWLINE\]NEWLINE In the present paper, the authors refine this equality at the level of stacks.
0 references