Existence results for nonlinear elliptic problems with lower order terms (Q2923063)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Existence results for nonlinear elliptic problems with lower order terms |
scientific article; zbMATH DE number 6355811
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Existence results for nonlinear elliptic problems with lower order terms |
scientific article; zbMATH DE number 6355811 |
Statements
15 October 2014
0 references
Sobolev spaces
0 references
nonlinear elliptic equation
0 references
Leray-Lions operator
0 references
entropy solution
0 references
0.96759576
0 references
0.96490556
0 references
0.9590509
0 references
0.9512213
0 references
0.9484435
0 references
0.9454888
0 references
0.94435453
0 references
0.9402721
0 references
0.9349414
0 references
Existence results for nonlinear elliptic problems with lower order terms (English)
0 references
The paper deals with existence of entropy solutions of nonlinear equations of the form NEWLINE\[NEWLINE -\mathrm{div}\big( a(x,u,\nabla u)+\Phi(u)\big)+g(x,u,\nabla u)+H(x,\nabla u)=\mu\quad \mathrm{in}\;\Omega, NEWLINE\]NEWLINE where \(\mu\in L^1(\Omega)+W^{-1,p'}(\Omega),\) \(-\mathrm{div}(a(x,u,\nabla u)\big)\) is a Leray-Lions operator growing as \(|\nabla u|^{p-1}\) and \(\Phi\in C^0(\mathbb{R},\mathbb{R}^N).\) The term \(g(x,u,\nabla u)\) grows critically in \(|\nabla u|\) with no restrictions in \(u,\) while \(H(x,\nabla u)\sim |\nabla u|^{p-1}.\)
0 references