Sumsets of reciprocals in prime fields and multilinear Kloosterman sums (Q2925759)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sumsets of reciprocals in prime fields and multilinear Kloosterman sums |
scientific article; zbMATH DE number 6358162
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sumsets of reciprocals in prime fields and multilinear Kloosterman sums |
scientific article; zbMATH DE number 6358162 |
Statements
Sumsets of reciprocals in prime fields and multilinear Kloosterman sums (English)
0 references
17 October 2014
0 references
congruences modulo a prime
0 references
sumsets
0 references
multilinear exponential sums
0 references
multilinear Kloosterman sums
0 references
distribution of primes
0 references
0.90694237
0 references
0.90632606
0 references
0.9062922
0 references
0 references
0.8998356
0 references
0.8979509
0 references
0.89675087
0 references
This notable article is devoted to the additive properties of the set \(I^{-1}=\{x^{-1}:x\in I\}\), where \(I\) is an arbitrary interval in the field of residue classes modulo a large prime \(p\). The authors established new lower bounds on cardinalities of the sets NEWLINE\[NEWLINEk(I^{-1})=\{x_1^{-1}+\ldots +x_k^{-1};x_i\in I\}NEWLINE\]NEWLINE and new upper bounds for closely connected quantities NEWLINE\[NEWLINEJ_{2k}=|\{(x_1,\ldots,x_{2k})\in I^{2k}:x_1^{-1}+\ldots+x_k{-1}=x_{k+1}^{-1}+\ldots+x_{2k}^{-1}\}|.NEWLINE\]NEWLINE Some theorems for small \(|I|\) give optimal estimates.NEWLINENEWLINE{Theorem 3.} Suppose that \(|I|<p^{\frac{1}{18}}\). Then NEWLINE\[NEWLINEJ_6<|I|^{3+o(1)},\text{\quad and \quad}|I^{-1}+I^{-1}+I^{-1}|>I^{3+o(1)}.NEWLINE\]NEWLINENEWLINENEWLINE{Theorem 4.} Suppose that \(k>0\) and \(|I|<p^{\frac{1}{4k^2}}\). Then NEWLINE\[NEWLINEJ_{2k}<|I|^{k+o(1)},\text{\quad and \quad}|k(I^{-1})|>I^{k+o(1)}.NEWLINE\]NEWLINENEWLINENEWLINECombining their results with estimates of multilinear exponential sums, the authors obtain new results on incomplete multilinear Kloosterman sums.
0 references