On corner avoidance of \(\beta\)-adic Halton sequences (Q292655)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On corner avoidance of \(\beta\)-adic Halton sequences |
scientific article; zbMATH DE number 6590190
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On corner avoidance of \(\beta\)-adic Halton sequences |
scientific article; zbMATH DE number 6590190 |
Statements
On corner avoidance of \(\beta\)-adic Halton sequences (English)
0 references
8 June 2016
0 references
The authors show that the extended \(s\)-dimensional \({\boldsymbol \beta}\)-adic Halton sequence (extension of \(\boldsymbol \beta\)-adic Halton sequence given in [the first author et al., Ergodic Theory Dyn. Syst. 35, No. 3, 895--909 (2015; Zbl 1395.11106)]) is uniformly distributed in \([0,1)^s\). Let \({\mathbf h}=(h^{(1)},\ldots, h^{(s)})\in \{0,1\}^s\) be a corner of the unit cube \([0,1)^s\). The hyperbolic distance for \({\mathbf x}=(x^{(1)},\ldots, x^{(s)})\in [0,1)^s\) to the corner \({\mathbf h}\) is defined by \[ \|{\mathbf x}\|_{\mathbf h}=\prod_{i=0}^s |x^{(i)}-h^{(i)}|. \] Using Schmidt's subspace theorem, they prove that the \(s\)-dimensional \(\boldsymbol \beta\)-adic Halton sequence \((\psi_{\boldsymbol \beta}(n))_{n>0}\) avoids the corners: for any \(\varepsilon>0\) there exists \(C_{\varepsilon, {\boldsymbol \beta}}>0\) such that \[ \|\psi_{\boldsymbol \beta}(N)\|_{\mathbf h}>\frac{C_{\varepsilon, \boldsymbol \beta}}{N^{H/2+\varepsilon}}, \] where \(H=2\) if \({\mathbf h}=(0,\ldots, 0)\); \(H=s\) if \({\mathbf h}=(1,\ldots 1)\); \(H=1+\sum_{i=1}^s h^{(i)}\) otherwise.
0 references
corner avoidance
0 references
uniform distribution
0 references
beta-expansion
0 references
numerical integration
0 references
subspace theorem
0 references
0.74113476
0 references
0 references
0.62199026
0 references
0.6156361
0 references
0.6110703
0 references
0.60252917
0 references
0.6022887
0 references
0.6004347
0 references