The Weierstrass-Whittaker integral transform (Q2927722)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Weierstrass-Whittaker integral transform |
scientific article; zbMATH DE number 6365647
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Weierstrass-Whittaker integral transform |
scientific article; zbMATH DE number 6365647 |
Statements
4 November 2014
0 references
Weierstrass-Whittaker integral transform
0 references
Weierstrass transform
0 references
Whittaker integral transform
0 references
heat kernel
0 references
non-stationary heat-type equation
0 references
The Weierstrass-Whittaker integral transform (English)
0 references
The authors introduce the Weierstrass-Whittaker integral transform, defined as NEWLINE\[NEWLINE [\mathcal{W}_tf](x)=\int_0^\infty \mathcal{K}_t(x,y)f(y)e^{-\left(y+\frac{1}{y}\right)}y^\alpha dy, NEWLINE\]NEWLINE where \(\mathcal{K}_t(x,y)\) is the heat kernel associated with the Whittaker transform. It is defined as NEWLINE\[NEWLINE \mathcal{K}_t(x,y)=\int_0^\infty e^{-4\nu^2\tau t}e^{\frac{-y\tau}{2}}W_{\mu,\nu}(y\tau)e^{\frac{-x\tau}{2}}W_{\mu,\nu}(x\tau)e^{-\left(\tau+\frac{1}{\tau}\right)} \tau^\alpha d\tau, NEWLINE\]NEWLINE for \(t, x, y>0\). They study some properties of the transform and show that it is useful in solving a generalized non-stationary heat equation with an initial condition.
0 references