Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel (Q2928358)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel |
scientific article; zbMATH DE number 6366652
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel |
scientific article; zbMATH DE number 6366652 |
Statements
7 November 2014
0 references
singular integral operator
0 references
variable Calderón-Zygmund kernel
0 references
Toeplitz type operator
0 references
sharp maximal function
0 references
BMO
0 references
Morrey space
0 references
Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón-Zygmund kernel (English)
0 references
Let \(K(x):=\Omega(x)/|x|^n:\,\mathbb{R}^n\setminus\{0\}\rightarrow\mathbb{R}\). Then \(K\) is said to be a Calderón-Zygmund kernel ifNEWLINENEWLINE(i) \(\Omega\in C^\infty(\mathbb{R}^n\setminus\{0\})\);NEWLINENEWLINE(ii) \(\Omega\) is homogeneous of degree zero;NEWLINENEWLINE(iii) \(\int_{\Sigma}\Omega(x)x^{\alpha}\,d\sigma(x)=0\) for all multi-indices \(\alpha\in(\mathbb{N}\cup\{0\})^{n}\) with \(|\alpha|=N\), where \(\Sigma:=\{x\in\mathbb{R}^n:\;|x|=1\}\) is the unit sphere of \(\mathbb{R}^n\).NEWLINENEWLINELet \(K(x,y):=\Omega(x,y)/|y|^n:\,\mathbb{R}^n\times(\mathbb{R}^n\setminus\{0\})\rightarrow\mathbb{R}\). Then \(K\) is said to be a variable Calderón-Zygmund kernel ifNEWLINENEWLINE(iv) \(K(x,\cdot)\) is a Calderón-Zygmund kernel for almost every \(x\in\mathbb{R}^n\);NEWLINENEWLINE(v) \(\max_{|\gamma|\leq2n}\|\frac{\partial^{|\gamma|}\Omega(x,y)}{\partial^{\gamma}y}\|_{L^\infty(\mathbb{R}^n\times\Sigma)}<\infty\).NEWLINENEWLINEFurthermore, let \(b\in L^1_{\mathrm{loc}}(\mathbb{R}^n)\) and \(T\) be the singular integral operator with variable Calderón-Zygmund kernel defined by NEWLINE\[NEWLINET(f)(x):=\int_{\mathbb{R}^n} K(x,x-y)f(y)\,dy, NEWLINE\]NEWLINE where \(K(x,x-y):=\frac{\Omega(x,x-y)}{|x-y|^n}\). The Toeplitz type operators associated to \(T\) are defined by NEWLINE\[NEWLINET_b:=\sum_{k=1}^m T^{k,1}M_b T^{k,2} NEWLINE\]NEWLINE and NEWLINE\[NEWLINE S_b:=\sum_{k=1}^m\left(T^{k,3}M_b I_{\alpha}T^{k,4}+T^{k,5}I_{\alpha}M_b T^{k,6}\right), NEWLINE\]NEWLINE where \(T^{k,1}\) and \(T^{k,3}\) are the singular integral operator \(T\) with variable Calderón-Zygmund kernel or \(\pm I\) (the identity operator), \(T^{k,2}\), \(T^{k,4}\) and \(T^{k,6}\) are the bounded linear operators on \(L^p(\mathbb{R}^n)\) for \(p\in(1,\infty)\), \(T^{k,5}:=\pm I\), \(M_b(f):=bf\) and \(I_{\alpha}\) (\(\alpha\in(0,n)\)) is the fractional integral operator. In this article, the authors prove several sharp maximal inequalities for the Toeplitz type operator \(T_b\). As applications, the authors further obtain the boundedness of \(T_b\) and \(S_b\) on Morrey spaces.
0 references