Schur \(m\)-power convexity of generalized Hamy symmetric function (Q2928376)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Schur \(m\)-power convexity of generalized Hamy symmetric function |
scientific article; zbMATH DE number 6366667
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Schur \(m\)-power convexity of generalized Hamy symmetric function |
scientific article; zbMATH DE number 6366667 |
Statements
7 November 2014
0 references
symmetric function
0 references
Schur \(m\)-power convexity
0 references
Hamy symmetric function
0 references
geometric mean
0 references
arithmetic mean
0 references
0.9499193
0 references
0.9383684
0 references
0.9238307
0 references
0.92048955
0 references
Schur \(m\)-power convexity of generalized Hamy symmetric function (English)
0 references
Let \(r\in \{1, 2, \dots, n\}\). The authors prove that the generalized Hamy symmetric function, NEWLINE\[NEWLINEF^\ast_n ((x_1,x_2,\dots,x_n), r) =\sum_{i_1 +i_2 +\dots+i_n =r,\;i_j>0} (x_1^{i_1} x_2^{i_2} \dots x_n^{i_3})^{\frac{1}{r}},NEWLINE\]NEWLINENEWLINE is Schur \(m\)-power concave -- respectively convex -- on the positive orthant of the real \(n\)-dimensional vector space when \(m\) is greater or equal to 1 -- respectively when \(m\) is less or equal to \(\frac{1}{r}\).
0 references