Quasi-Assouad dimension of fractals (Q294299)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Quasi-Assouad dimension of fractals |
scientific article; zbMATH DE number 6593689
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Quasi-Assouad dimension of fractals |
scientific article; zbMATH DE number 6593689 |
Statements
Quasi-Assouad dimension of fractals (English)
0 references
16 June 2016
0 references
Assouad dimension
0 references
quasi-Lipschitz equivalence
0 references
Bedford-McMullen carpet
0 references
quasi-uniform disconnectedness
0 references
Let \(E\) be a subset of a metric space \((X,d)\). For \(0< r < R\), denote by \(N_r(E)\) the smallest number of balls of radius \(r\) required to cover \(E\). Set NEWLINE\[NEWLINE N_{r,R}(E) := \sup_{x\in E} N_r(B(x,R)\cap E), NEWLINE\]NEWLINE where \(B(x,R) :=\{y\in X : d(x,y) < R\}\). For any \(0 < \delta < 1\), let NEWLINE\[NEWLINE h_E(\delta) := \inf\left\{\alpha \geq 0 : \exists c > 0 \text{ such that }N_{r,R}(E) \leq c \left(\frac{R}{r}\right)^\alpha,\,\forall \;0 < r < r^{1-\delta}\leq R\right\} .NEWLINE\]NEWLINE The authors introduce the quasi-Assouad dimension of \(E\) defined by NEWLINE\[NEWLINE \dim_{qA} E := \lim_{\delta\to 0+} h_E(\delta). NEWLINE\]NEWLINE They prove that for any compact \(E\subset X\) NEWLINE\[NEWLINE \dim_H E \leq \overline{\dim}_B E \leq \dim_{qA} E \leq \dim_A E, NEWLINE\]NEWLINE where the subscripts \(H\), \(B\), and \(A\) refer to the Hausdorff, Box, and Assouad dimension, respectively. Furthermore, it is shown that the quasi-Assouad dimension is invariant under quasi-Lipschitz mappings. Using the quasi-Assouad dimension, the authors also prove that any Bedford-McMullen carpet \(F\) is quasi-Lipschitz Assouad-minimal in the sense that \(\dim_A f(F) \geq \dim_A F\) for any quasi-Lipschitz-mapping \(f\).
0 references