Quasi-Assouad dimension of fractals (Q294299)

From MaRDI portal





scientific article; zbMATH DE number 6593689
Language Label Description Also known as
English
Quasi-Assouad dimension of fractals
scientific article; zbMATH DE number 6593689

    Statements

    Quasi-Assouad dimension of fractals (English)
    0 references
    0 references
    0 references
    16 June 2016
    0 references
    Assouad dimension
    0 references
    quasi-Lipschitz equivalence
    0 references
    Bedford-McMullen carpet
    0 references
    quasi-uniform disconnectedness
    0 references
    Let \(E\) be a subset of a metric space \((X,d)\). For \(0< r < R\), denote by \(N_r(E)\) the smallest number of balls of radius \(r\) required to cover \(E\). Set NEWLINE\[NEWLINE N_{r,R}(E) := \sup_{x\in E} N_r(B(x,R)\cap E), NEWLINE\]NEWLINE where \(B(x,R) :=\{y\in X : d(x,y) < R\}\). For any \(0 < \delta < 1\), let NEWLINE\[NEWLINE h_E(\delta) := \inf\left\{\alpha \geq 0 : \exists c > 0 \text{ such that }N_{r,R}(E) \leq c \left(\frac{R}{r}\right)^\alpha,\,\forall \;0 < r < r^{1-\delta}\leq R\right\} .NEWLINE\]NEWLINE The authors introduce the quasi-Assouad dimension of \(E\) defined by NEWLINE\[NEWLINE \dim_{qA} E := \lim_{\delta\to 0+} h_E(\delta). NEWLINE\]NEWLINE They prove that for any compact \(E\subset X\) NEWLINE\[NEWLINE \dim_H E \leq \overline{\dim}_B E \leq \dim_{qA} E \leq \dim_A E, NEWLINE\]NEWLINE where the subscripts \(H\), \(B\), and \(A\) refer to the Hausdorff, Box, and Assouad dimension, respectively. Furthermore, it is shown that the quasi-Assouad dimension is invariant under quasi-Lipschitz mappings. Using the quasi-Assouad dimension, the authors also prove that any Bedford-McMullen carpet \(F\) is quasi-Lipschitz Assouad-minimal in the sense that \(\dim_A f(F) \geq \dim_A F\) for any quasi-Lipschitz-mapping \(f\).
    0 references

    Identifiers