Reeb orbits and the minimal discrepancy of an isolated singularity (Q295722)

From MaRDI portal





scientific article; zbMATH DE number 6592957
Language Label Description Also known as
English
Reeb orbits and the minimal discrepancy of an isolated singularity
scientific article; zbMATH DE number 6592957

    Statements

    Reeb orbits and the minimal discrepancy of an isolated singularity (English)
    0 references
    0 references
    13 June 2016
    0 references
    Let \(A\subset \mathbb{C}^N\) be an irreducible affine variety of complex dimension \(n\) which has an isolated singularity at the origin. The main result is the following. Theorem: Let \(A\) have a normal isolated singularity at \(0\) that is numerically \(Q\)-Gorenstein with \(H^1(L_A;Q)= 0\). Then: 1) if \(\mathrm{md}(A,0)\geq 0\) then \(\mathrm{hmi}(L_A;\xi_A)= 2\,\mathrm{md}(A,0)\); 2) if \(\mathrm{md}(A,0)< 0\) then \(\mathrm{hmi}(L_A;\xi_A)< 0\). Here \(\mathrm{md}(A,0)\) is the minimal discrepancy of \(A\) at \(0\), and \(\mathrm{hmi}(L_A;\xi_A)\) is the highest minimal SFT index of \((L_A;\xi_A)\).
    0 references
    contact manifold
    0 references
    singularity
    0 references
    minimal discrepancy
    0 references
    Reeb orbits
    0 references
    contactomorphism
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers