Spectral analysis in thin tubes with axial heterogeneities (Q296849)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Spectral analysis in thin tubes with axial heterogeneities |
scientific article; zbMATH DE number 6597543
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Spectral analysis in thin tubes with axial heterogeneities |
scientific article; zbMATH DE number 6597543 |
Statements
Spectral analysis in thin tubes with axial heterogeneities (English)
0 references
23 June 2016
0 references
spectrum
0 references
homogenization
0 references
quantum waveguides
0 references
This paper deals with the asymptotic behavior of the spectral problem NEWLINE\[NEWLINE\begin{cases} -\operatorname{div}(A_\varepsilon\nabla \widetilde{v}_\varepsilon^\delta)=\lambda_\varepsilon^\delta \widetilde{v}_\varepsilon^\delta, &\text{in }\quad \delta\omega\times I,\\ \widetilde{v}_\varepsilon^\delta \in H_0^1(\delta\omega\times I), \end{cases}NEWLINE\]NEWLINE where \(\omega\) is an open bounded domain in \({\mathbb R}^2\), \(I\) is the interval \((0,L)\), \(L > 0\), and where \(\varepsilon\) and \(\delta\) are small parameters: \(\delta\) represents the thickness of the thin domain and \(\varepsilon\) the length scale of the heterogeneities. These heterogeneities are encoded in a \(3 \times 3\) matrix \(A_\varepsilon\), which only depends on the third variable \(A_\varepsilon(x_3)=A\left(\frac{x_3}{\varepsilon}\right)\). The authors consider the particular case of a diagonal and \((0,1)\)-periodic matrix NEWLINE\[NEWLINEa_{\alpha\beta}=b(y)\delta_{\alpha\beta}, a_{33}=a(y), \eta\leq a(y),b(y)\leq \zeta, \eta<\zeta, y\in[0,1].NEWLINE\]NEWLINE They study the asymptotic behaviour of the spectrum as both positive parameters \(\delta\) and \(\varepsilon\) tend to zero and \(\varepsilon \gg \delta\).
0 references