Global weighted estimates in Orlicz spaces for second-order nondivergence parabolic equations (Q299234)

From MaRDI portal





scientific article; zbMATH DE number 6596378
Language Label Description Also known as
English
Global weighted estimates in Orlicz spaces for second-order nondivergence parabolic equations
scientific article; zbMATH DE number 6596378

    Statements

    Global weighted estimates in Orlicz spaces for second-order nondivergence parabolic equations (English)
    0 references
    22 June 2016
    0 references
    global weighted estimates
    0 references
    Orlicz spaces
    0 references
    second-order parabolic operator
    0 references
    nondivergence
    0 references
    Cauchy-Dirichlet problem
    0 references
    small BMO
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    The paper deals with strong solutions to the Cauchy-Dirichlet problem NEWLINE\[NEWLINE \begin{cases} u_t-a^{ij}(x,t)u_{x_ix_j}=f & \text{ in }\Omega_T,\\ u=0 & \text{ on }\partial_p\Omega_T, \end{cases}NEWLINE\]NEWLINE where \(\Omega_T\) is a cylinder of base \(\Omega\) and height \(T\) and \(\Omega\subset \mathbb{R}^{n}\) is a bounded domain with \(C^{1,1}\)-smooth boundary. The operator is supposed to be uniformly parabolic with coefficients of small-BMO seminorms. The author proves that if the right-hand side \(f\) of the equation belongs to the Orlicz space \(L^\phi_\omega(\Omega_T),\) then NEWLINE\[NEWLINE u,\;Du,\;D^2u, u_t\in L^\phi_\omega(\Omega_T). NEWLINE\]
    0 references

    Identifiers