Twisted characteristic \(p\) zeta functions (Q301433)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Twisted characteristic \(p\) zeta functions |
scientific article; zbMATH DE number 6599778
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Twisted characteristic \(p\) zeta functions |
scientific article; zbMATH DE number 6599778 |
Statements
Twisted characteristic \(p\) zeta functions (English)
0 references
30 June 2016
0 references
In [Invent. Math. 55, 107--116 (1979; Zbl 0402.12006)] \textit{D. Goss} introduced a new type of \(L\)--series and in particular the Goss zeta function for \(s=(x; y)\in {\mathbb S}_{\infty} :={\mathbb C}^*_{\infty}\times {\mathbb Z}_p\): \(\zeta_A(s)=\sum_{d\geq 0} \sum_{a\in A_{+,d}}\Big(\frac{1}{\big(\frac{a}{\theta^d}\big)^y}\Big) x^{-d}\in {\mathbb C}^*_{\infty}\), where \(A={\mathbb F}_q[\theta]\), \(A_{+,d}= \{a\in A\mid \text{}a\) is monic of degree \(d\)
0 references
Goss zeta functions
0 references
function field arithmetic
0 references
zeta functions of several variables
0 references
0 references
0 references
0 references
0.91131485
0 references
0.9047472
0 references
0.8995368
0 references
0.8981098
0 references
0.88909596
0 references
0.8886382
0 references