Some remarks on the homogeneous Boltzmann equation with the fractional Laplacian term (Q315839)

From MaRDI portal





scientific article; zbMATH DE number 6629516
Language Label Description Also known as
English
Some remarks on the homogeneous Boltzmann equation with the fractional Laplacian term
scientific article; zbMATH DE number 6629516

    Statements

    Some remarks on the homogeneous Boltzmann equation with the fractional Laplacian term (English)
    0 references
    0 references
    26 September 2016
    0 references
    Boltzmann equation
    0 references
    fractional Laplacian term
    0 references
    bounded fractional moments
    0 references
    existence
    0 references
    Boltzmann collision operator
    0 references
    Fourier transformation
    0 references
    The author of this paper studies the homogeneous Boltzmann equation with a fractional Laplacian term. NEWLINE\[NEWLINE (1) \;\;\;\;\partial_{t}f(v,t)+ \delta_p(-\triangle )^{p/2}f(v,t) =Q(f,f)(v,t), \;\;(v,t)\in\mathbb{R}^3\times (0,\infty ), NEWLINE\]NEWLINE NEWLINE\[NEWLINE f(v,0) = f_{0}(v), NEWLINE\]NEWLINE where \(0<p\leq 2\) and \(\delta_p\geq 0\) are some constants, \(f(v,t)\) is the density distribution of particles in rarefied gas with velocity \(v\in\mathbb{R}^3\) and time \(t>0\), \(Q\) is the Boltzmann collision operator corresponding to the Maxwellian molecule type cross section. After taking into account the Bobylev formula, and applying the Fourier transform to the system (1), one obtains a new form, NEWLINE\[NEWLINE (2) \;\;\;\;\;\;\;\;(\partial_{t}+\delta_p|\xi |^{p})\phi (\xi ,t) ={\mathcal{B}}(\phi )(\xi ,t), \;\;(\xi ,t)\in\mathbb{R}^3\times (0,\infty ), NEWLINE\]NEWLINE NEWLINE\[NEWLINE \phi (\xi ,0) = \phi_0 (\xi ), NEWLINE\]NEWLINE where \(\phi (\xi ,t)= {\mathcal{F}}[f(\cdot ,t)](\xi )\), \({\mathcal{B}}(\phi )(\xi )= {\mathcal{F}}[Q(f ,f)](\xi )\). The author proposes to replace the initial data space with a certain space \({\mathcal{M}}^{\alpha }\) introduced by \textit{Y. Morimoto} et al. [J. Math. Pures Appl. (9) 103, 809--829 (2015; Zbl 1308.35155)], NEWLINE\[NEWLINE {\mathcal{M}}^{\alpha }\equiv\biggl\{\phi\in {\mathcal{K}}: \|\phi -1\|_{{\mathcal{M}}^{\alpha }}= \int_{\mathbb{R}^3}|\phi (\xi )-1| |\xi |^{-3-\alpha }d\xi< \infty \biggr\}. NEWLINE\]NEWLINE It seems that \({\mathcal{M}}^{\alpha }\) ``precisely captures the Fourier image of probability measures with bounded fractional moments, providing a more natural initial condition''. Here the space \({\mathcal{K}}\) contains all characteristic functions introduced by \textit{M. Cannone} and \textit{G. Karch} [Comm. Pure Appl. Math. 63, 747--778 (2010; Zbl 1205.35180)]. Note that the corresponding to (2) integral equation has the form: NEWLINE\[NEWLINE \phi (\xi ,t)=e^{-\delta_p|\xi |^{p_t}}\phi_0(\xi )+ \int_{0}^{t}e^{-\delta_p|\xi |^{p_{(t-\tau )}}} {\mathcal{B}}(\phi )(\xi ,\tau )d\xi . NEWLINE\]NEWLINE The main result here is that for any \(\phi_0\in {\mathcal{M}}^{\alpha }\) (\(\alpha_0\leq \alpha <p\)) the integral equation has a classical solution \(\phi \) in the class \({\mathcal{T}}^{\alpha } (\mathbb{R}^3\times [0,\infty ))\equiv \{\phi \in C([0,\infty ); {\mathcal{M}}^{\alpha }): \phi (\xi ,\cdot )\in C([0,\infty )), \;\partial_{t}\phi (\xi ,\cdot )\in C([0,\infty )) \;\;\text{for} \;\;\forall \xi \in\mathbb{R}^3\}\). It turns out that the above stated solution \(\phi \) satisfies the a priori estimate \( \sup\limits_{\xi\in\mathbb{R}^3} e^{\delta_p|\xi |^{p_t}} |\phi (\xi ,t)|\leq 1\) for each \(t\geq 0\). As a consequence it is shown existence of a continuous density solution of the original equation.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references