The Landis-Oleinik conjecture in the exterior domain (Q317306)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Landis-Oleinik conjecture in the exterior domain |
scientific article; zbMATH DE number 6631657
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Landis-Oleinik conjecture in the exterior domain |
scientific article; zbMATH DE number 6631657 |
Statements
The Landis-Oleinik conjecture in the exterior domain (English)
0 references
30 September 2016
0 references
Carleman estimates
0 references
unique continuation
0 references
backward uniqueness
0 references
Landis-Oleinik conjecture
0 references
parabolic equation
0 references
0 references
0 references
0 references
In [Russ. Math. Surv. 29, No. 2, 15--212 (1974; Zbl 0305.35014)] \textit{E. M. Landis} and \textit{O. A. Olejnik} proposed the following conjecture: If \(u(x, t)\) is a bounded solution of a uniformly parabolic equation NEWLINE\[NEWLINE \sum_{i,j=1}^n \partial_i\big(a^{ij}(x)\partial_ju\big)+ b(x)\cdot\nabla u+c(x)u-\partial_t u=0\quad \text{in }\mathbb{R}^n\times[0,T], NEWLINE\]NEWLINE such that NEWLINE\[NEWLINE |u(x,T)|\leq N e^{-|x|^{2+\varepsilon}},\quad x\in \mathbb{R}^n NEWLINE\]NEWLINE with positive constants \(N\) and \(\varepsilon\), then \(u(x,t)\equiv0\) in \(\mathbb{R}^n\times[0,T]\), provided that the coefficients of the equation satisfy appropriate conditions at infinity.NEWLINENEWLINEThe authors prove this conjecture for operators with space-time dependent smooth coefficients.
0 references