The interior \(C^2\) estimate for the Monge-Ampère equation in dimension \(n = 2\) (Q325826)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The interior \(C^2\) estimate for the Monge-Ampère equation in dimension \(n = 2\) |
scientific article; zbMATH DE number 6637201
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The interior \(C^2\) estimate for the Monge-Ampère equation in dimension \(n = 2\) |
scientific article; zbMATH DE number 6637201 |
Statements
The interior \(C^2\) estimate for the Monge-Ampère equation in dimension \(n = 2\) (English)
0 references
11 October 2016
0 references
interior \(C^2\) a priori estimate
0 references
Monge-Ampère equation
0 references
\(\sigma^2\)-Hessian equation
0 references
optimal concavity
0 references
0.99239457
0 references
0.98237884
0 references
0.9670688
0 references
0.9557302
0 references
0.9353684
0 references
The paper deals with convex solutions of the Monge-Ampère equation NEWLINE\[NEWLINE\det D^2u=f(x)\quad \text{in }B_R(0)\subset\mathbb R^2.NEWLINE\]NEWLINE The interior \(C^2\) estimates for the convex solutions have been proved by \textit{E. Heinz} [J. Anal. Math. 7, 1--52 (1959; Zbl 0152.30901)] for planar planar domains, and by \textit{A. V. Pogorelov} [The Minkowski multidimensional problem. New York etc.: John Wiley \& Sons (1978; Zbl 0387.53023)] for dimensions \(n\geq3\).NEWLINENEWLINEThe authors rediscover the Heinz result by considering suitable new auxiliary functions.
0 references