A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions (Q340990)

From MaRDI portal





scientific article; zbMATH DE number 6653067
Language Label Description Also known as
English
A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions
scientific article; zbMATH DE number 6653067

    Statements

    A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions (English)
    0 references
    0 references
    0 references
    0 references
    15 November 2016
    0 references
    0 references
    Navier-Stokes equations
    0 references
    finite Dirichlet integral
    0 references
    scaling invariance
    0 references
    Liouville-type theorem
    0 references
    The purpose of this paper is to study a stationary Navier-Stokes equation NEWLINE\[NEWLINE\begin{cases} -\Delta v+(v\cdot \nabla)v+\nabla p=0, \\ \operatorname{div} v=0 \end{cases}NEWLINE\]NEWLINE in \(\mathbb{R}^3\). The main theorem states that for a certain asymptotic estimate for \(x\), the finite Dirichlet integral \(D(v)<\infty\).NEWLINENEWLINEThe proofs use generalized Hölder inequality, Calderon-Zygmund kernel, Biot-Savart law, Liouville theorem for harmonic functions, Riesz transform, Marcinkiewicz interpolation theorem.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references