Explicit formulas of the Bergman kernel for some Reinhardt domains (Q345296)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Explicit formulas of the Bergman kernel for some Reinhardt domains |
scientific article; zbMATH DE number 6658548
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Explicit formulas of the Bergman kernel for some Reinhardt domains |
scientific article; zbMATH DE number 6658548 |
Statements
Explicit formulas of the Bergman kernel for some Reinhardt domains (English)
0 references
1 December 2016
0 references
The power series of \(n\) variables \[ \sum\limits_{m=0}^{\infty} \frac{(a)_{2m_1+\ldots+2m_n} x_1^{m_1} \ldots x_n^{m_n}}{(c)_{m_1+\ldots+m_n} m_1! \ldots m_n!} \] is represented explicitly in terms of the classical hypergeometric functions. By using this result an explicit representation for the Bergman kernel in certain Reinhardt domains is obtained.
0 references
Reinhardt domains
0 references
Bergman kernel
0 references
hypergeometric functions
0 references