Convergence abscissas for Dirichlet series with multiplicative coefficients (Q346268)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Convergence abscissas for Dirichlet series with multiplicative coefficients |
scientific article; zbMATH DE number 6659605
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Convergence abscissas for Dirichlet series with multiplicative coefficients |
scientific article; zbMATH DE number 6659605 |
Statements
Convergence abscissas for Dirichlet series with multiplicative coefficients (English)
0 references
5 December 2016
0 references
Dirichlet series
0 references
convergence abscissas
0 references
multiplicative coefficients
0 references
0 references
0 references
Considering the standard definition of a Dirichlet series NEWLINE\[NEWLINEf(s)=\sum_{n=1}^\infty a_nn^{-s}\quad(s=\sigma+it),NEWLINE\]NEWLINE one can define three convergence abscissas: NEWLINE\[NEWLINE\begin{aligned} \sigma_c(f)&=\inf\left\{\sigma:\sum_{n=1}^\infty a_nn^{-\sigma}\text{ converges}\right\},\\ \sigma_b(f)&=\inf\left\{\sigma:\sum_{n=1}^\infty a_nn^{-\sigma-it}\text{ converges uniformly for }t\in\mathbb R\right\},\\ \sigma_a(f)&=\inf\left\{\sigma:\sum_{n=1}^\infty |a_n|n^{-\sigma}\text{ converges}\right\}.\end{aligned}NEWLINE\]NEWLINE The authors study the relationship between these abscissas when the sequence \(a_n\) is (completely) multiplicative.NEWLINENEWLINEThe authors prove the following two statements:NEWLINENEWLINE1) There exists a Dirichlet series \(f\) with completely multiplicative coefficients such that \(\sigma_a(f)-\sigma_c(f)=\alpha\) for any \(\alpha\in[0,1]\).NEWLINENEWLINE2) For any Dirichlet series \(f\) with multiplicative coefficients, \(\sigma_a(f)=\sigma_b(f)\).
0 references