Random perturbations of non-singular transformations on \([0,1]\) (Q354028)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Random perturbations of non-singular transformations on \([0,1]\) |
scientific article; zbMATH DE number 6188776
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Random perturbations of non-singular transformations on \([0,1]\) |
scientific article; zbMATH DE number 6188776 |
Statements
Random perturbations of non-singular transformations on \([0,1]\) (English)
0 references
17 July 2013
0 references
The authors study random perturbations of a non-singular measurable transformation \(S:[0,1] \rightarrow [0,1]\). They obtain the existence of invariant densities for random perturbations of \(S\) using the spectral decomposition theorem of \textit{J. KomornÃk} and \textit{A. Lasota} [Bull. Pol. Acad. Sci., Math. 35, No. 1--10, 321--327 (1987; Zbl 0642.47026)]. Furthermore, the authors show that the densities for random perturbations with small noise converge strongly to the density for the Perron-Frobenius operator corresponding to \(S\) with respect to the \(L^1([0,1])\)-norm. This parallels a result of \textit{A. Lasota} and \textit{M. C. Mackey} [Chaos, fractals, and noise: Stochastic aspects of dynamics. 2nd ed. New York, NY: Springer-Verlag (1994; Zbl 0784.58005)].
0 references
random dynamical system
0 references
spectral decomposition
0 references
random perturbation
0 references