Limit theorems for beta-Jacobi ensembles (Q358145)

From MaRDI portal





scientific article; zbMATH DE number 6198878
Language Label Description Also known as
English
Limit theorems for beta-Jacobi ensembles
scientific article; zbMATH DE number 6198878

    Statements

    Limit theorems for beta-Jacobi ensembles (English)
    0 references
    0 references
    0 references
    16 August 2013
    0 references
    random matrices
    0 references
    \(\beta\)-ensemble
    0 references
    Jacobi ensemble
    0 references
    Laguerre ensemble
    0 references
    empirical distribution of eigenvalues
    0 references
    largest eigenvalue
    0 references
    smallest eigenvalue
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    The \(\beta\)-Jacobi ensemble with parameters \(\beta>0\) and \(a_1,a_2>\frac{\beta}{2}(n-1)\) is a random vector of eigenvalues \(\lambda=(\lambda_1,\dotsc,\lambda_n)\) taking values in \([0,1]^n\) and having probability density function NEWLINE\[NEWLINE f(\lambda_1,\dotsc,\lambda_n) = \mathrm{const} \cdot \prod_{1\leq i<j\leq n} |\lambda_i - \lambda_j|^{\beta} \cdot \prod_{i=1}^n \lambda_i^{a_1-p} (1-\lambda_i)^{a_2-p}, NEWLINE\]NEWLINE where \(p=1+\frac {\beta} 2 (n-1)\). The author studies the limiting properties of \(\lambda\) in the following limiting regime: NEWLINE\[NEWLINE a_1,a_2, n\to\infty, \; a_1=o(\sqrt{a_2}), \; n=o(\sqrt{a_2}), \; \frac{n\beta}{2a_1}\to \gamma\in (0,1]. NEWLINE\]NEWLINE The author computes the global limiting distribution of the (appropriately normalized) eigenvalues, the limiting distribution of the maximal and minimal eigenvalue (and more generally, the joint limiting distribution of any finite number of extreme order statistics), and proves a central limit theorem for the linear eigenvalue statistics. The proofs are based on the possibility to approximate (in the limiting regime described above) the \(\beta\)-Jacobi ensemble by a \(\beta\)-Laguerre ensemble.
    0 references

    Identifiers