On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions (Q362501)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions |
scientific article; zbMATH DE number 6200347
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions |
scientific article; zbMATH DE number 6200347 |
Statements
On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions (English)
0 references
22 August 2013
0 references
The authors study direct and inverse spectral problems for the Sturm-Liouville equation \[ -y'' +\frac{C}{x^\alpha}y +q(x) y =\lambda y,\quad x\in (0,\pi), \] subject to the following boundary conditions \[ y(0)=0,\quad (\alpha_1\lambda + \alpha_2)y(\pi) + (\beta_1\lambda + \beta_2)y'(\pi)=0, \] and also the jump condition at some fixed point \(a\in (\frac{\pi}{2},\pi)\) \[ y(a+)=\beta\, y(a-),\quad \beta\, y'(a+)= y'(a-). \] It is assumed that \(q=\overline{q}\in L^2(0,\pi)\), \(\alpha\in (1,\frac{3}{2})\), \(C\in\mathbb{R}\), \(\beta\in (0,1)\cup (1,+\infty)\), and \(\alpha_1\beta_2-\alpha_2\beta_1<0\). The main result of the paper is the uniqueness for the inverse spectral problem. Namely, the authors prove that the set of eigenvalues and the corresponding norming constants uniquely determine the coefficients of the spectral problem.
0 references
Sturm-Liouville problem
0 references
eigenvalue dependent boundary conditions
0 references
inverse spectral problem
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references