On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions (Q362501)

From MaRDI portal





scientific article; zbMATH DE number 6200347
Language Label Description Also known as
English
On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions
scientific article; zbMATH DE number 6200347

    Statements

    On impulsive Sturm-Liouville operators with singularity and spectral parameter in boundary conditions (English)
    0 references
    22 August 2013
    0 references
    The authors study direct and inverse spectral problems for the Sturm-Liouville equation \[ -y'' +\frac{C}{x^\alpha}y +q(x) y =\lambda y,\quad x\in (0,\pi), \] subject to the following boundary conditions \[ y(0)=0,\quad (\alpha_1\lambda + \alpha_2)y(\pi) + (\beta_1\lambda + \beta_2)y'(\pi)=0, \] and also the jump condition at some fixed point \(a\in (\frac{\pi}{2},\pi)\) \[ y(a+)=\beta\, y(a-),\quad \beta\, y'(a+)= y'(a-). \] It is assumed that \(q=\overline{q}\in L^2(0,\pi)\), \(\alpha\in (1,\frac{3}{2})\), \(C\in\mathbb{R}\), \(\beta\in (0,1)\cup (1,+\infty)\), and \(\alpha_1\beta_2-\alpha_2\beta_1<0\). The main result of the paper is the uniqueness for the inverse spectral problem. Namely, the authors prove that the set of eigenvalues and the corresponding norming constants uniquely determine the coefficients of the spectral problem.
    0 references
    Sturm-Liouville problem
    0 references
    eigenvalue dependent boundary conditions
    0 references
    inverse spectral problem
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers