Stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms (Q369928)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms |
scientific article; zbMATH DE number 6209286
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms |
scientific article; zbMATH DE number 6209286 |
Statements
Stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms (English)
0 references
19 September 2013
0 references
Summary: This work concerns the stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms as well as Dirichlet boundary condition. By means of Poincaré inequality and Gronwall-Bellman-type impulsive integral inequality, we summarize some new and concise sufficient conditions ensuring the global exponential stability of equilibrium point. The proposed criteria are relevant to the diffusion coefficients and the smallest positive eigenvalue of corresponding Dirichlet Laplacian. In conclusion, two examples are illustrated to demonstrate the effectiveness of our obtained results.
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references