On domains and ranges of powers of linear relations in linear spaces (Q371706)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On domains and ranges of powers of linear relations in linear spaces |
scientific article; zbMATH DE number 6214877
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On domains and ranges of powers of linear relations in linear spaces |
scientific article; zbMATH DE number 6214877 |
Statements
On domains and ranges of powers of linear relations in linear spaces (English)
0 references
10 October 2013
0 references
Let \(\mathcal X\) be a linear space and \(A\) be a linear relation on \(\mathcal X\). The notations \(\operatorname{dom}A\), \(\operatorname{ran}A\), \(\operatorname{ker}A\) and \(\operatorname{mul}A\) denote the domain, the range, the kernel and the multivalued part of \(A\), respectively. In this paper, the author shows that, if \(A\) and \(B\) are two linear relations such that \(B\) is a restriction of \(A\), one has: {\parindent=6mm \begin{itemize}\item[(1)] if \(\mathrm{dim }\frac{\mathrm{ker }A}{\mathrm{ker }B}<\infty,\) then, for every \(n\in\mathbb N,\) \(n\geq 1\), \[ \mathrm{dim }\frac{\mathrm{ran }A^n}{\mathrm{ran }B^n}\leq n\cdot\mathrm{dim }\frac{\mathrm{ran }A}{\mathrm{ran }B}+(n-1)\cdot\mathrm{dim }\frac{\mathrm{ker }A}{\mathrm{ker }B}; \] \item[(2)] if \(\mathrm{dim }\frac{\mathrm{mul }A}{\mathrm{mul }B}<\infty,\) then, for every \(n\in\mathbb N,\) \(n\geq 1\), \[ \mathrm{dim }\frac{\mathrm{dom }A^n}{\mathrm{dom }B^n}\leq n\cdot\mathrm{dim }\frac{\mathrm{dom }A}{\mathrm{dom }B}+(n-1)\cdot\mathrm{dim }\frac{\mathrm{mul }A}{\mathrm{mul }B}. \] \end{itemize}} The first formula is new even in the operatorial case.
0 references
linear space
0 references
linear relation
0 references
domain
0 references
range
0 references
kernel
0 references
multivalued part
0 references
0 references