A Lewent type determinantal inequality (Q373716)

From MaRDI portal





scientific article; zbMATH DE number 6219276
Language Label Description Also known as
English
A Lewent type determinantal inequality
scientific article; zbMATH DE number 6219276

    Statements

    A Lewent type determinantal inequality (English)
    0 references
    0 references
    24 October 2013
    0 references
    Lewent inequality
    0 references
    determinantal inequality
    0 references
    trace class operators
    0 references
    contraction
    0 references
    Let \(A_i\), \(i=1,\dots ,n\), be strictly contractive trace class operators over a separable Hilbert space. The author proves the determinant inequality NEWLINE\[NEWLINE \left | \det \left (\frac{I+\sum _{i=1}^{n}\lambda _iA_i}{I-\sum _{i=1}^{n}\lambda _iA_i}\right )\right |\leq \prod _{i=1}^n\det \left (\frac{I+|A_i|}{I-|A_i|}\right )^{\lambda _i}, NEWLINE\]NEWLINE where \(\sum _{i=1}^n \lambda _i=1\), \(\lambda _i\geq 0\), \(i=1,\dots ,n\). This generalizes the following numerical inequality due to \textit{L. Lewent} [Sitzungsber. Berl. Math. Ges. 7, 95--101 (1908; JFM 39.0466.02)]: NEWLINE\[NEWLINE \frac{1+\sum _{i=1}^{n}\lambda _ix_i}{1-\sum _{i=1}^{n}\lambda _ix_i} |\leq \prod _{i=1}^n\det \left (\frac{1+|x_i|}{1-|x_i|}\right )^{\lambda _i}, NEWLINE\]NEWLINE where \(x_i\in [0,1), \sum _{i=1}^n \lambda _i=1\), \(\lambda _i\geq 0\), \(i=1,\dots ,n\).
    0 references

    Identifiers