Free groups in quaternion algebras. (Q376041)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Free groups in quaternion algebras. |
scientific article; zbMATH DE number 6221936
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Free groups in quaternion algebras. |
scientific article; zbMATH DE number 6221936 |
Statements
Free groups in quaternion algebras. (English)
0 references
1 November 2013
0 references
hyperbolic groups
0 references
generalized quaternion algebras
0 references
free groups
0 references
free semigroups
0 references
group rings
0 references
groups of units
0 references
Möbius transformations
0 references
Let \(\bigl(\frac{a,b}{K}\bigr)=\langle 1,i,j,k\mid i^2=a,\;j^2=b,\;k=ij=-ji,\;a,b\in K\rangle\) be a generalized quaternion algebra over a field \(K\).NEWLINENEWLINE The authors prove the following result. If \(\mathfrak o_K\) is the ring of integers of the algebraic number field \(K\), then the multiplicative group generated by the units \(u=\sqrt{-1}+(i-\sqrt{-1})j\) and \(w=\sqrt{-1}+(i+\sqrt{-1})j\) in the algebra \(\bigl(\frac{-1,-1}{\mathfrak o_{\mathbb Q(\sqrt{-1})}}\bigr)\) is free.
0 references