Necessary and sufficient conditions for the solvability and maximal regularity of abstract differential equations of mixed type in Hölder spaces (Q379117)

From MaRDI portal





scientific article; zbMATH DE number 6224225
Language Label Description Also known as
English
Necessary and sufficient conditions for the solvability and maximal regularity of abstract differential equations of mixed type in Hölder spaces
scientific article; zbMATH DE number 6224225

    Statements

    Necessary and sufficient conditions for the solvability and maximal regularity of abstract differential equations of mixed type in Hölder spaces (English)
    0 references
    8 November 2013
    0 references
    second-order linear differential equation
    0 references
    boundary value problem
    0 references
    Banach space
    0 references
    Hölder space
    0 references
    Let \(A\) be a closed linear operator in a complex Banach space \(X\) with the domain \(D(A)\), not necessary dense in \(X\). Suppose that for all \(\lambda\geq0\) NEWLINE\[NEWLINE\exists (A-\lambda I)^{-1}\in L(X),\quad \|(A-\lambda I)^{-1}\|\leq\frac{C}{1+\lambda}.NEWLINE\]NEWLINE Let us consider a second-order linear differential equation NEWLINE\[NEWLINE u''(x)+Au(x)=f(x),\quad x\in (0,1),NEWLINE\]NEWLINE with boundary conditions \(u(0)=d_0\), \(u'(1)=n_1\) and a function \(f\in C^\theta([0,1];X)\), \(0<\theta<1\).NEWLINENEWLINEIt is proved that the boundary value problem has a unique strict solution \(u\in C^2([0,1];X)\cap C([0,1];X)\) iff NEWLINE\[NEWLINE d_0\in D(A),\quad n_1\in D(\sqrt{-A}),\quad Ad_0-f(0)\in \overline{D(A)},\quad \sqrt{-A}n_1\in\overline{d(A)}.NEWLINE\]NEWLINE Moreover, \(u'', Au\in C^\theta([0,1];X)\) (maximum regularity property) iff NEWLINE\[NEWLINE d_0\in D(A),\quad n_1\in D(\sqrt{-A}),\quad Ad_0-f(0),\sqrt{-A}n_1\in(D(A),X)_{1-\theta/2,\infty}.NEWLINE\]NEWLINE Here \((D(A),X)_{p,q}\) for \(p\in(0,1)\), \(q\in [1,+\infty]\) is the interpolation space.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references