Gevrey normal forms for nilpotent contact points of order two (Q379745)

From MaRDI portal





scientific article; zbMATH DE number 6224651
Language Label Description Also known as
English
Gevrey normal forms for nilpotent contact points of order two
scientific article; zbMATH DE number 6224651

    Statements

    Gevrey normal forms for nilpotent contact points of order two (English)
    0 references
    11 November 2013
    0 references
    0 references
    singular perturbation
    0 references
    Gevrey asymptotics
    0 references
    Lienard system
    0 references
    normal form
    0 references
    0 references
    0 references
    0 references
    The object of the study of this paper is a planar slow-fast system NEWLINE\[NEWLINE\begin{aligned} \dot x&=y-f(x,\epsilon), \\ \dot y&=\epsilon h(x,y,\epsilon) \end{aligned}NEWLINE\]NEWLINE in the situation when loss of normal hyperbolicity occurs, namely, \(f(0,0)=\frac{\partial f}{\partial x}(0,0)=0\) (\(\frac{\partial^2 f}{\partial x^2}(0,0)\neq0\)).NEWLINENEWLINEUsing the Gevrey formal power series it is shown that for \(\epsilon\geq0\) there exists a local analytic change of coordinates which transforms the original problem into the generalized Lienard system of the form NEWLINE\[NEWLINE\begin{aligned} \dot x=y&-x^2, \\ \dot y=\epsilon[g(x,\epsilon)&+R(x,y,\epsilon)] \end{aligned}NEWLINE\]NEWLINE with an analytic function \(g\) and exponentially small remainder \(R,\) \(| R(x,y,\epsilon)|\leq Ce^{-\frac{\rho}{\epsilon}}\) for some positive constants \(C\) and \(\rho.\)
    0 references

    Identifiers