Nonperturbative spectral action of round coset spaces of \(\mathrm{SU}(2)\) (Q380270)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Nonperturbative spectral action of round coset spaces of \(\mathrm{SU}(2)\) |
scientific article; zbMATH DE number 6226610
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Nonperturbative spectral action of round coset spaces of \(\mathrm{SU}(2)\) |
scientific article; zbMATH DE number 6226610 |
Statements
Nonperturbative spectral action of round coset spaces of \(\mathrm{SU}(2)\) (English)
0 references
13 November 2013
0 references
noncommutative geometry
0 references
spectral action principle
0 references
Dirac spectrum
0 references
spectral geometry
0 references
Lens space
0 references
Poincaré homology sphere
0 references
Berger metric
0 references
3-sphere
0 references
0 references
0.91943306
0 references
0.89711446
0 references
0.8828995
0 references
0.8812567
0 references
0 references
0.8697337
0 references
0.8682202
0 references
0.86742294
0 references
Recall that the spectral action on a spectral triple \(({\mathcal A}, {\mathcal H}, {\mathcal D})\) is a functional \(\mathrm{Tr}~f({\mathcal D}/\Lambda)\), where \(f: {\mathbb R}\to {\mathbb R}\) is a test function and \(\Lambda>0\) is a constant.NEWLINENEWLINE The main result of the paper says that for any finite subgroup \(\Gamma\) of \(\mathrm{SU}(2)\) and the canonical Dirac operator on \(\mathrm{SU}(2)/\Gamma\) with a round metric and trivial spin, the spectral action satisfies \(\mathrm{Tr}~(f({\mathcal D}/\Lambda)={1\over |\Gamma|}(\Lambda^3\hat f^{(2)}(0)-{1\over 4} \Lambda\hat f(0))+O(\Lambda^{-\infty})\). The spectral triples considered are commutative, i.e. \({\mathcal A}=C^{\infty}(M)\) and \({\mathcal H}=L^2(M, \Sigma_n)\), where \(\Sigma_n\) is the spinor.
0 references